 (Author/RL)

Title: An Examination of the Relationship Between Schooi Scores Derived from Commercial Achievement Tests and Those From Stratewide Assessment

Authdrs: Ross S . Blust and Richard LI Kohr

This study investigated an apparent discrepancy between building level scores in basic skills produced by Pennsylvania's state assessment 'program ànd building sumary scores, generally a grade equivalent, providey by commercial standardizêd achievement tests. The impetus for the study came from occasional reports by school administrators that their school level gràde equivalent, suggestred above average performance while the state assessment percentile rank seemed low by comparison. Achievement test scores at the building level, obtained from approximately 302 school districts, were merged with etate assessment scores in reading, writing skills and mathematics. Correthations in the .70 to .85 range revealed a similar rank ordering of schools by commercial and state assessment test's. Rather than average building performance being, equivalent to the grade-month of testing, as believed by many administrators, the distribution of building mean scotes for several commercial, tests indicated that "average" corresponded to grade equivalent of six. months to a year beyond that point,

> An Examination of the Relationship Between School Scores Derived From Comercial Achidvement Tests and Those From Statewide Assessment

INTRODUCTION

This. study was conducted to investigaté the perceived discrépancy in, building level basic skill scores provided by the Pennsylvania Educational, Quality Assessment Program (EQA) and the building 'sumary scores, generally.
\therefore a grade equivalent, obtained from comercial standaraized achievement tests. When comparing the building level results from these two data sources; school administrators sometimes noticed that their standardized test results appeared to be higher than the state assessment results. This discrepancy presented public relations problems when attempting to report seemingly conflicting test results. An informal review of the school districts making this complaint suggested that the problem:血ight be confined to just two or thitee of the major standardized tests. In such instances, the general senario was one in which the school building grade equivalent suggested above average performance whereas the EQA state percentile seemed low by comparison. Expecting higher EQA performance. : seemed to originate from the assumption by school administrators that a grade equivalent comensurate with the grade-month at which otesting took place was indicative of "average" performance (with respect to a national norm). Furthermore, a grade equivalent higher than the grade-month of testing was interpreted as above average performance.

The Pennsylvania Educational Quality Assessment (EQA) program utilizes state norms developed each year of the assessment on Pennsylvania building mean scores, National norms produced by commercial achievement test companies on a base notm year are calculated on student level scores. Thus, part of the difference in performance is due to differences in aggregation level and norm samples. Also, commercial achievement tests utilize a base year to norm while EQA has renormed each year.

During the construction of the EQA tests, student level correlations In the .60 to .80 range were found between EQA subject tests and similar tests from several prominent standardized tests. From these results it was anticipated that, EQA building level scores in reading, writing and mathematics would show reașonably close agreement with reading, language, and mathematics sçores obtained from the commercial achievement tests.

- This expectation is based on the fact that when aggregated data such as a building mean score is the upit of analysis, a larger magnitude in the correlation coefficient is generally observed (Robinson, 1950).

Instruments

The présent EQA test package, developed by Pennsylvania Department of Education staff, with the assistance of advisory committees; has been in use since 1978. The assessmept package provides school districts कीth information at the school building level in both cognitive and. affectiye areas at grades five, eight and eleven. Reading, writing, and mathematics were the areas of primary concern in the present study. All EQA tests are miltiple choice format. The grade five reading test. : consisting of 48 items, is comprised of predominantly inferential comprehension items. The writing skills test includes' 45 items measuring mechanics and usage, sentence sense, paragraph sense and style; tone and flavor. The 60 item mathematics test, measuring conceptual, computational, and problem solving leve1s, containg items dealing with number systems, numeration, notation, gęometry,-measurement, number pattern, relationships and other topics. The reliability and validity of these finstruments is documented in the manual, Getting Indide The EQA Inventory (Kohr; Hertzog and Seiverling, 1980).

Commercial achievement tests included wére the following: California Achievement Tests, Comprehensite Tests of Basicskills (CTBS), Iowa Tests of Basic Skills, Metropolitan Achievement Tests, SRA (Science Research Associate) Assessment Survey, and the Stanford Achievement Test. Reading, language, añ mathematićs scores were obtained for the achievement tests previously listed.

It should be noted that there were differences In the subscales combined to produce total reading, total mathematics, or language scores. For example, the California Achievement Test includes in the language fore both mechanics and language expression. Language mechanics contains capitalization and punctuath tiens while language expression. contains usage, sentence structure and waragraph organization (CTB/McGrawHill, 1978). The Metropolitan Achievenent Test includes items measuring listening comprehenkion, grammar and syntax, spelling, studỳ skills, punctuation and capitalization, and usage as a, part of the language score (Psychological Corporation, 1979). Baged on the content description offered by the publishers, there are differendes in the content included for areas such as language. Hence, there are not only differences in the items from test to test but differences in the content covered:

METHOD
Over 380 school districts who participated en the state assessment during the three year perfod of 1978 to 1980 were requested to submit photocopies of the building level standardized achievement test results for grades five, eight, and eleven. The request was for test results only for the year that the school district participated in the EQA program. Replies were received from 302 school districts by the end of July 1980. Some returns wैere unusable because achievement tests were not administered in the required grades. Data representing six test companies were included among the usable returns.

Each school's sumary statistics, including the mean raw score, grade equivalent, percentile ránk, stanine, and standard score were merged with EQA test scores and condition yariables. The EQA program ; gather's data on thirty-five condition variables which reflect the operational conditions of the school including socioeconomic indicators. . These data enabled analyses to be conducted, comparing the samples of schools usin'g different comercial achievement tests, with respect to socioeconomic andid other condition variables:

Achievement test companies were assigned a code letter so that individual companies could not be identified in the study. For grades eight and eleven, the sample gathered for each achievement test was rather small. This was dup mainly to a decrease in the use of achlevement, tests at higher grade levels. Therefore, the only data analyzed and
$*$ reported were for the fifth grade.

Correlations with Grade Equivalents

Correlations were calculated to evaluate the nature and magnitude of the relationship between EQA reading, writing, and mathematics scores and the appropriate scores derived from each of the standardized tests. Initially, the intent was to use mean number of items correct or a standard score from the standardized achievement test results as a metric to correlate with the EQA building mean raw scores: Upon examination of the.data, it was found that, because school districts can opt to receive the scores they wish, an insufficient number of schools requested the desired scores. All schools did receive building level grade equivalent scores. Thus, the grade equivalent was chosen as the metric for analysis. The correlations presented are between EQA building mean raw scores and achievement test grade equivalents. Correlations were calculated for two groups, those schools that administered commercial achievement tests in the fall and those testing in the spring:

Table 1 presents the correlations for grade five reading scores. These correlations reveal a strong positive relationship between EQA mean scores and achievement test grade equivalents for reading. The highest correlations were found in the case of schools administering the achievement test in the spring. This is to be expected since the EQA tests are also given in the spring of each year. As noted in Table 1. the sample size is extremely low for several tests under the fall testing column. In these instances, the correlations were omitted (indicated by NA). In general, the correlations indicate that schools scoring high on the EQA measure of reading also tended to have" high grade equivalent scores in reading on commercially produced achievement tests. Conversely, schools with low EQA scores tend to have low grade equivalent scores.

Table 1.

Building Level Correlations Between Grade Five EQA Reading Mean Raw Scores and Achievement Test: Mean Reading Grade Equivalient Scores

As revealed by the correlations found in Table 2, there was strong positive statiseical relationship between EQA writing scores and grade equivalent scores in writing on cqumercial achievement tests. Achieveqent test companies A and B were used by only a few schools thus the correlationg should be viewed with caution: For both reading and Writing correlations the relationship between EQA scores and achievement tests was rather strong as expected-due to the similarity of content of the EQA and commercial achievement tests. It was noted that correlations for the larger samples of over 50 schools ranged from .71 for achievement test \bar{D} for spfing testing to .87 for achievement test E for spring testing.
. Correlations between the EQA mean scores and achieyement test grade equivalents in mathematics wene placed in Table 3:. For mattematics there was a strong positive relationship between all of the achievement tests and EQA: Corielations for the larger samples of over 50 schools or ranged from . 75 on achievement test F for fall testing tol. 85 for achievement test F spring testing.

In summary; the statistical relationship found between EQA mean scores and achievement test grade equivalents was rather strong and. aliways positive for reading, writing and mathematics. Correlations between EQA scores and mean school scores administering achievement tests in the sp̈ring were almost always the highest. : Schodis administering achievement tests in the fall were anticipated to have lower mean grade equivalent scores than those schools administering achievenent tests in the spring. Achievement tests B, C and D at times had slightiy lower correlations with EQA than other achievement tests considered. In general the comrelations indicated high agreement between achievement test scores and "EQA scores.

Table 2
Building Level Correlations Between Grade Fife EQA Méan Writing Raw Scores and Achlevement Tes't, Mean Writing Grade Equivalent Scores

The reading grade equivalent means-for achievement tests, found in Table 4, revealed that achievement tests A, B, D, and F had means that were higher than "expected." An analysis of the means for schools t testing in the spring found that test F had the highest mean which was over one year higher than anticipated. Means were nót included in Table 4 for tests B and D where sample size was extremely small. Also, the -means presented for the rather emall samples should be viewed with caution.

Grade flue writing means were placed in Table 5 for each achievement test. Writing achievement tests A, B, D, and F had grade equivalent means higher than expected. None of the means for spring testing was below 6.2 for writing. The meahs for three achievement tests were above 7.0 for spring testing which is'over one year higher than expected.

Table 4
Building Level Mean Grade Equivalent,
Scores for Reading at Grade Five

Summarized in Table 6 are the mathematics mean grade equivalents for each achievement test. Mathematics had lower mean grade equivalents
1 than reading and writing; however, the means for achievement -tests $A,{ }^{\circ} B$, D, and F were higher than expected:

Overall; the grade equivalent means indicated schools were scoring much higher than anticipated for, all three areas: reading, writing, and mathematics. The grade equivalent means revealed large differences between achievement test means with tests A, B, D, and F providing higher scores than tests C and E. Mean grade equivalents for tests "C and E on reading and mathematics came closest to the grade equivalents anticipated.

-911

The results helped to explain why several school district employees indicated there was a discrepancy. between EQA and achievement test scores'. In order to be above the state mean a grade five mean school

- score on an achievement test for spring testing often had to be ovet a grade equivalent of 6:6 and in, several cases even higher. From an analysis of 211 elementary schools using test. F (the most extreme case) an average grade equifalent for spring testing of 7.09 was found for total reading and 6.71 for total math. It is instructive to examine the distribution of grade equivalent scores for the 262 schools using test' F. THirty seven percent of the reading scores were 7.0 or higher. Only seventeen percent of the schools scored lower than 6.0 Table 7 summarizes the building level grade equivalent scores associated with percentile ranks based on the sampleof schools providing scores. Thus' a school with' a mean grade equivalent of 6.4 imireading was found to have a percentile rank in the sample of schools using tese F that was equivalent to epproxitnately the 30 th percentile. Many school district employees perceiyed meen achievement test' scores as"being high 'when the grade equivalents, "were above the year and month of testing.: This view áppears to be incorrect since much higher grade equivallent scores are requireds. tờ be above the staté nean on several achỉevement tests.

Table 7
Pertcentile Rank in Reading and Mathematics
Grade Equivalents for Schools Using Achievement Test F
$n=262$

With the results of this study EQA staff members and school district employees should be better able to interpret both EQA scores and achievement
\because test scores especially grade equivalents from the achievement tests. Alsa, "it should be noted that grade equivalents are not endorsed by the authors as being the most useful statistic that could be employed to present achievement test results. Grade equivalents are not consistent from achievement test to achievement test and from subject to subject. For example, a student scoring 2.0 years above grade level in reading may not receive the same percentile rank in reading and mathematics although scoring 2.0 years abóve grade level in math. Differtences in achievement test grade equivalents were noted in Tables 4,5 , and 6 exemplifying the inconsistencies from test to test. Also, employees of state assessment programs outside of Pennsylvania may find this study helpful when interpreting state assessment results.
\because
Comparability of the Sample to the State
Since data were collected from a total of 302 school districts representing several achievement test companies, an examination of the sample utilized in the study was performed. The sample might be questioned as to whether it is representative of the population of schools undergoing assessment during the 1978 to 1980 period. To factlitate this comparison, mean scores on a set of variables depicting EQA basic skills achievement, socioeconomic background, demographic characteristics and indices of teaching staff perceptions are presented in Table 8. To determine
F_{F}
whether the mean scores for the 660 schaols providing standardized test data differed significantly from the 1590 schools assessed from 1978 to 1980, a z test was employed (Hays, 1963, p. 250). A11 tests were nonsignificant with the exception of parental education ($z=4.58, p<$.01), parental occupation ($z=2.99, p<.01$), population density $(z=$ $2.82, \mathrm{p}<.01)$, family size $(z=2.60, \mathrm{p}<.01)$ and amount of reading material in the home ($z=2.91, p<.01$). To assist in evaluating these significant differences, given the large sample, a measure of "effect size" (Cohen, 1969) was calculated by forming a ratio of the observed difference to the population standard deviation. In each case, the effect size was quite smal1, only . 07 except for parental education which reached . 11. All can ${ }^{\text {* }}$ be safely disregarded.

The examination of the comparability of the schools comprising each sample was continued by calculating percentiles and EQA variables. The characteristics of the schools providing data on the different standardized tests were analyzed by converting mean scores and EQA variables to percentile ranks. Percentiles for the EQA variables were placed on Table 9 by achievement tests published. The samples gathered for the study when analyzed by test had most EQA scores at or close to the state median (50th percentile). This indicated the samples were based on schools that, when averaged together, were representative of the state. ' Achievement test B had the lowest percentiles in the EQA basic skill areas of reading, writing, and mathematics and was the test that differed most from the state median. A review of achievement test B mean grade equivalents found in Tables 4, 5, and 6 revealed grade equivalents higher than anticipated. 'Thus, the schools using achievement test B have the lowest EQA mean scores, but the mean grade equivalents were among the highest. Possibly in part, the unexpected findings for test ${ }^{\text {* }}$ B could be explained by the rather small sample of only forty schools -creating inconsistent results. Achievement test A had the highest percentiles in the EQA basic skill areas and on the other EQA variables. For test A the mean grade equivalents found in Tables 4,5 , and 61 were - rather high which may be explained by the hedian achievement levels in EQA scores. But, the mean grade equivalent for test A were rather high even for schools that were above the state median at the 55th percentile or 60th percentile: In general, the schools sampled were on EQA mean scores typical of the state. This supported the assumption that grade equivalents were for the most achievement tests producing higher than anticipated scores.

1

$$
11
$$

Table 8

Comparability of Schools Supplying Standardized Test Datai With All Schools Undergoing Assessment During 1978-1980

Variable	Schools Supplying Test Data ($\mathrm{n}=660$)		All Schools Assessed ($\mathrm{n}=1590$)	
	Mean	SD	Mean	SD
Reading	27.62	3.94	27.58	3.75
Writing	29.08	3.24	28.92	$3.11{ }^{\text {² }}$
Mathematics	37.45°	4.25	37.20	4.03
Grade enrollment	62.66	40.22	63.61	42.46
Percentage of low income students.	20.39	14.81	19.95	13.38
Parental education	3.69	0.65	3.62,	1 0.61
Parental occupation	56.41	12.85	55.49	12.28
Population density	2.35	1.83	2.22	1.84
Percentage of whites studentas	92.44	13.95	92.88	12.61
Family size	2.36	0.44	2.39	0.46
Amount of reading materials in home	10.96	1.00	10.89	0.96
Factors disruptive to classroom management	$20.04{ }^{\text {² }}$	1.49	19.99.	1.47
Discipline problems	10.91	1.95,	10.99	1.82
Teacher influence on instructional decisions	20.13	2.58	20.05	2.61

$$
-15
$$

Note: For Test A $\dot{n}=64$, Test $B \quad n=40$, Test $C, n \equiv 116$, Test $D{ }_{\mathrm{n}}^{\mathrm{n}} \equiv 72$, Test E $\mathbf{n}=106$, Test $F \mathbf{n}=262$
4

ANCILLARY FINDINGS

: Data were available on the testing dates for each achiewement test; hen'é; a summary was produced for grade fiye test F the achievement test with the most schools responding. The number of schools testing was sumarized in Table 10 for each month from September to June. It was interesting to find testing conducted months before and after the fall and spring norming dates. This is a questionable practice on the part of school district employees. It was noted that over 60 percent of the schools test in the spring.

Table 10
Achievement Test F Testing Dates Grade Five

17

Cohen, J. Statistical Power Analysis for the Behavioral Sciences, New York: Academic Press, 1969.

CTB/McGraw-Hill. California Achievement Test: Class Management Guide, Foms C and D. Monterey; CA: CTB/McGraw-Hill, 1978;
${ }^{*}$ Hays; W. L' Statistics for Psychologists, New York; - and Winston, 1963.

Kohr, R., L.; Hertzog, J, F. and Seiverling; R. Getting Inside The EQA Inventory, Harrisburg, Pennsylvania Department of Education, 1980.

Psychological Corporation. Resources For Decision Making. New York:/
The Psychological Corporation, 1979.
Robinson, W. S. Ecological correlations and the behavion ϕf individuals. American Sociological Review, 1950, 15, 351-357.

Williams; T. B , The distributions of NCE, percentile and grade equivalent scores among twelve pationally* standardized tests. 户丷 per presented at the Annual Meeting of the American Educational Research Assoedation, Boston, April 1980.

